The canonical nuclear factor-κB pathway regulates cell survival in a developmental model of spinal cord motoneurons

Stefka Tasheva, Ana Garcera, Myriam Gou-Fabregas, Mario Encinas, Xavier Dolcet, Rosa M. Soler

Research output: Contribution to journalArticlepeer-review

16 Citations (Scopus)

Abstract

In vivo and in vitro motoneuron survival depends on the support of neurotrophic factors. These factors activate signaling pathways related to cell survival or inactivate proteins involved in neuronal death. In the present work, we analyzed the involvement of the nuclear factor-KB (NF-kB) pathway in mediating mouse spinal cord motoneuron survival promoted by neurotrophic factors. This pathway comprises ubiquitously expressed transcription factors that could be activated by two different routes: the canonical pathway, associated with IKKa/IKK/3 kinase phosphorylation and nuclear translocation RelA (p65)/p50 transcription factors; and the noncanonical pathway, related to IKKa kinase homodimer phosphorylation and RelB/p52 transcription factor activation. In our system, we show that neurotrophic factors treatment induced IKKa and IKK/3 phosphorylation and RelA nuclear translocation, suggesting NF-kB pathway activation. Protein levels of different members of the canonical or noncanonical pathways were reduced in a primary culture of isolated embryonic motoneurons using an interference RNA approach. Even in the presence of neurotrophic factors, selective reduction of IKKa, IKK/3, or RelA proteins induced cell death. In contrast, RelB protein reduction did not have a negative effect on motoneuron survival. Together these results demonstrated that the canonical NF-kB pathway mediates motoneuron survival induced by neurotrophic factors, and the noncanonical pathway is not related to this survival effect. Canonical NF-kB blockade induced an increase of Bim protein level and apoptotic cell death. Bcl-xL overexpression or Bax reduction counteracted this apoptotic effect. Finally, RelA knockdown causes changes of CREB and Smn protein levels.

Original languageEnglish
Pages (from-to)6493-6503
Number of pages11
JournalJournal of Neuroscience
Volume31
Issue number17
DOIs
Publication statusPublished - 27 Apr 2011
Externally publishedYes

ASJC Scopus subject areas

  • Neuroscience(all)

Cite this