Mutations at the boundary of the hinge and ligand binding domain of the androgen receptor confer increased transactivation function

Grant Buchanan, Miao Yang, Jonathan M. Harris, Hyun S. Nahm, Guangzhou Han, Nicole Moore, Jacqueline M. Bentel, Robert J. Matusik, David J. Horsfall, Villis R. Marshall, Norman M. Greenberg, Wayne D. Tilley

Research output: Contribution to journalArticle

100 Citations (Scopus)

Abstract

The androgen receptor (AR), a member of the steroid receptor superfamily of nuclear transcription factors, mediates androgen signaling in diverse target tissues. Here we report AR gene mutations identified in human prostate cancer and the autochthonous transgenic adenocarcinoma of the mouse prostate model that colocate to residues 668QPIF671 at the boundary of the hinge and ligand-binding domain, resulting in receptors that exhibit 2- to 4-fold increased activity compared with wild-type AR in response to dihydrotestosterone, estradiol, progesterone, adrenal androgens, and the AR antagonist, hydroxyflutamide, without an apparent effect on receptor levels, ligand binding kinetics, or DNA binding. The expression of these or similar variants could explain the emergence of hormone refractory disease in a subset of patients. Homology modeling indicates that amino acid residues 668QPIF671 form a ridge bordering a potential protein-protein interaction surface. The naturally occurring AR gene mutations reported in this study result in decreased hydrophobicity of this surface, suggesting that altered receptor-protein interaction mediates the precocious activity of the AR variants.

Original languageEnglish
Pages (from-to)46-56
Number of pages11
JournalMolecular Endocrinology
Volume15
Issue number1
DOIs
Publication statusPublished - 1 Jan 2001
Externally publishedYes

ASJC Scopus subject areas

  • Molecular Biology
  • Endocrinology

Cite this