Dynamic molecular changes during the first week of human life follow a robust developmental trajectory

The EPIC Consortium, Amy H. Lee, Casey P. Shannon, Nelly Amenyogbe, Tue B. Bennike, Joann Diray-Arce, Olubukola T. Idoko, Erin E. Gill, Rym Ben-Othman, William S. Pomat, Simon D. van Haren, Kim Anh Lê Cao, Momoudou Cox, Alansana Darboe, Reza Falsafi, Davide Ferrari, Daniel J. Harbeson, Daniel He, Cai Bing, Samuel J. Hinshaw & 29 others Jorjoh Ndure, Jainaba Njie-Jobe, Matthew A. Pettengill, Peter C. Richmond, Rebecca Ford, Gerard Saleu, Geraldine Masiria, John Paul Matlam, Wendy Kirarock, Elishia Roberts, Mehrnoush Malek, Guzmán Sanchez-Schmitz, Amrit Singh, Asimenia Angelidou, Kinga K. Smolen, Diana Vo, Ken Kraft, Kerry McEnaney, Sofia Vignolo, Arnaud Marchant, Ryan R. Brinkman, Al Ozonoff, Robert E.W. Hancock, Anita H.J. van den Biggelaar, Hanno Steen, Scott J. Tebbutt, Beate Kampmann, Ofer Levy, Robert Hancock

Research output: Contribution to journalArticle

19 Citations (Scopus)

Abstract

Systems biology can unravel complex biology but has not been extensively applied to human newborns, a group highly vulnerable to a wide range of diseases. We optimized methods to extract transcriptomic, proteomic, metabolomic, cytokine/chemokine, and single cell immune phenotyping data from <1 ml of blood, a volume readily obtained from newborns. Indexing to baseline and applying innovative integrative computational methods reveals dramatic changes along a remarkably stable developmental trajectory over the first week of life. This is most evident in changes of interferon and complement pathways, as well as neutrophil-associated signaling. Validated across two independent cohorts of newborns from West Africa and Australasia, a robust and common trajectory emerges, suggesting a purposeful rather than random developmental path. Systems biology and innovative data integration can provide fresh insights into the molecular ontogeny of the first week of life, a dynamic developmental phase that is key for health and disease.

LanguageEnglish
Article number1092
JournalNature communications
Volume10
Issue number1
DOIs
Publication statusPublished - 1 Dec 2019

ASJC Scopus subject areas

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)

Cite this