Controlled drug delivery from composites of nanostructured porous silicon and poly(L-lactide)

Steven J.P. McInnes, Yazad Irani, Keryn Williams, Nicolas H. Voelcker

Research output: Contribution to journalArticle

43 Citations (Scopus)

Abstract

Aims: Porous silicon (pSi) and poly(L-lactide) (PLLA) both display good biocompatibility and tunable degradation behavior, suggesting that composites of both materials are suitable candidates as biomaterials for localized drug delivery into the human body. The combination of a pliable and soft polymeric material with a hard inorganic porous material of high drug loading capacity may engender improved control over degradation and drug release profiles and be beneficial for the preparation of advanced drug delivery devices and biodegradable implants or scaffolds. Materials & methods: In this work, three different pSi and PLLA composite formats were prepared. The first format involved grafting PLLA from pSi films via surface-initiated ring-opening polymerization (pSi-PLLA [grafted]). The second format involved spin coating a PLLA solution onto oxidized pSi films (pSi-PLLA [spin-coated]) and the third format consisted of a melt-cast PLLA monolith containing dispersed pSi microparticles (pSi-PLLA [monoliths]). The surface characterization of these composites was performed via infrared spectroscopy, scanning electron microscopy, atomic force microscopy and water contact angle measurements. The composite materials were loaded with a model cytotoxic drug, camptothecin (CPT). Drug release from the composites was monitored via fluorimetry and the release profiles of CPT showed distinct characteristics for each of the composites studied. Results: In some cases, controlled CPT release was observed for more than 5 days. The PLLA spin coat on pSi and the PLLA monolith containing pSi microparticles both released a CPT payload in accordance with the Higuchi and Ritger-Peppas release models. Composite materials were also brought into contact with human lens epithelial cells to determine the extent of cytotoxicity. Conclusion: We observed that all the CPT containing materials were highly efficient at releasing bioactive CPT, based on the cytotoxicity data. Original submitted 16 December 2010; Revised submitted 29 September 2011; Published online 6 March 201.

LanguageEnglish
Pages995-1016
Number of pages22
JournalNanomedicine
Volume7
Issue number7
DOIs
Publication statusPublished - 1 Jul 2012

Keywords

  • composite material
  • glaucoma
  • localized drug delivery
  • poly(L-lactide)
  • porous silicon
  • uveitis

ASJC Scopus subject areas

  • Bioengineering
  • Medicine (miscellaneous)
  • Biomedical Engineering
  • Materials Science(all)

Cite this

@article{4918e6b8a84946eda6d920d68eae7132,
title = "Controlled drug delivery from composites of nanostructured porous silicon and poly(L-lactide)",
abstract = "Aims: Porous silicon (pSi) and poly(L-lactide) (PLLA) both display good biocompatibility and tunable degradation behavior, suggesting that composites of both materials are suitable candidates as biomaterials for localized drug delivery into the human body. The combination of a pliable and soft polymeric material with a hard inorganic porous material of high drug loading capacity may engender improved control over degradation and drug release profiles and be beneficial for the preparation of advanced drug delivery devices and biodegradable implants or scaffolds. Materials & methods: In this work, three different pSi and PLLA composite formats were prepared. The first format involved grafting PLLA from pSi films via surface-initiated ring-opening polymerization (pSi-PLLA [grafted]). The second format involved spin coating a PLLA solution onto oxidized pSi films (pSi-PLLA [spin-coated]) and the third format consisted of a melt-cast PLLA monolith containing dispersed pSi microparticles (pSi-PLLA [monoliths]). The surface characterization of these composites was performed via infrared spectroscopy, scanning electron microscopy, atomic force microscopy and water contact angle measurements. The composite materials were loaded with a model cytotoxic drug, camptothecin (CPT). Drug release from the composites was monitored via fluorimetry and the release profiles of CPT showed distinct characteristics for each of the composites studied. Results: In some cases, controlled CPT release was observed for more than 5 days. The PLLA spin coat on pSi and the PLLA monolith containing pSi microparticles both released a CPT payload in accordance with the Higuchi and Ritger-Peppas release models. Composite materials were also brought into contact with human lens epithelial cells to determine the extent of cytotoxicity. Conclusion: We observed that all the CPT containing materials were highly efficient at releasing bioactive CPT, based on the cytotoxicity data. Original submitted 16 December 2010; Revised submitted 29 September 2011; Published online 6 March 201.",
keywords = "composite material, glaucoma, localized drug delivery, poly(L-lactide), porous silicon, uveitis",
author = "McInnes, {Steven J.P.} and Yazad Irani and Keryn Williams and Voelcker, {Nicolas H.}",
year = "2012",
month = "7",
day = "1",
doi = "10.2217/nnm.11.176",
language = "English",
volume = "7",
pages = "995--1016",
journal = "Nanomedicine",
issn = "1743-5889",
publisher = "Future Medicine Ltd.",
number = "7",

}

Controlled drug delivery from composites of nanostructured porous silicon and poly(L-lactide). / McInnes, Steven J.P.; Irani, Yazad; Williams, Keryn; Voelcker, Nicolas H.

In: Nanomedicine, Vol. 7, No. 7, 01.07.2012, p. 995-1016.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Controlled drug delivery from composites of nanostructured porous silicon and poly(L-lactide)

AU - McInnes, Steven J.P.

AU - Irani, Yazad

AU - Williams, Keryn

AU - Voelcker, Nicolas H.

PY - 2012/7/1

Y1 - 2012/7/1

N2 - Aims: Porous silicon (pSi) and poly(L-lactide) (PLLA) both display good biocompatibility and tunable degradation behavior, suggesting that composites of both materials are suitable candidates as biomaterials for localized drug delivery into the human body. The combination of a pliable and soft polymeric material with a hard inorganic porous material of high drug loading capacity may engender improved control over degradation and drug release profiles and be beneficial for the preparation of advanced drug delivery devices and biodegradable implants or scaffolds. Materials & methods: In this work, three different pSi and PLLA composite formats were prepared. The first format involved grafting PLLA from pSi films via surface-initiated ring-opening polymerization (pSi-PLLA [grafted]). The second format involved spin coating a PLLA solution onto oxidized pSi films (pSi-PLLA [spin-coated]) and the third format consisted of a melt-cast PLLA monolith containing dispersed pSi microparticles (pSi-PLLA [monoliths]). The surface characterization of these composites was performed via infrared spectroscopy, scanning electron microscopy, atomic force microscopy and water contact angle measurements. The composite materials were loaded with a model cytotoxic drug, camptothecin (CPT). Drug release from the composites was monitored via fluorimetry and the release profiles of CPT showed distinct characteristics for each of the composites studied. Results: In some cases, controlled CPT release was observed for more than 5 days. The PLLA spin coat on pSi and the PLLA monolith containing pSi microparticles both released a CPT payload in accordance with the Higuchi and Ritger-Peppas release models. Composite materials were also brought into contact with human lens epithelial cells to determine the extent of cytotoxicity. Conclusion: We observed that all the CPT containing materials were highly efficient at releasing bioactive CPT, based on the cytotoxicity data. Original submitted 16 December 2010; Revised submitted 29 September 2011; Published online 6 March 201.

AB - Aims: Porous silicon (pSi) and poly(L-lactide) (PLLA) both display good biocompatibility and tunable degradation behavior, suggesting that composites of both materials are suitable candidates as biomaterials for localized drug delivery into the human body. The combination of a pliable and soft polymeric material with a hard inorganic porous material of high drug loading capacity may engender improved control over degradation and drug release profiles and be beneficial for the preparation of advanced drug delivery devices and biodegradable implants or scaffolds. Materials & methods: In this work, three different pSi and PLLA composite formats were prepared. The first format involved grafting PLLA from pSi films via surface-initiated ring-opening polymerization (pSi-PLLA [grafted]). The second format involved spin coating a PLLA solution onto oxidized pSi films (pSi-PLLA [spin-coated]) and the third format consisted of a melt-cast PLLA monolith containing dispersed pSi microparticles (pSi-PLLA [monoliths]). The surface characterization of these composites was performed via infrared spectroscopy, scanning electron microscopy, atomic force microscopy and water contact angle measurements. The composite materials were loaded with a model cytotoxic drug, camptothecin (CPT). Drug release from the composites was monitored via fluorimetry and the release profiles of CPT showed distinct characteristics for each of the composites studied. Results: In some cases, controlled CPT release was observed for more than 5 days. The PLLA spin coat on pSi and the PLLA monolith containing pSi microparticles both released a CPT payload in accordance with the Higuchi and Ritger-Peppas release models. Composite materials were also brought into contact with human lens epithelial cells to determine the extent of cytotoxicity. Conclusion: We observed that all the CPT containing materials were highly efficient at releasing bioactive CPT, based on the cytotoxicity data. Original submitted 16 December 2010; Revised submitted 29 September 2011; Published online 6 March 201.

KW - composite material

KW - glaucoma

KW - localized drug delivery

KW - poly(L-lactide)

KW - porous silicon

KW - uveitis

UR - http://www.scopus.com/inward/record.url?scp=84864441469&partnerID=8YFLogxK

U2 - 10.2217/nnm.11.176

DO - 10.2217/nnm.11.176

M3 - Article

VL - 7

SP - 995

EP - 1016

JO - Nanomedicine

T2 - Nanomedicine

JF - Nanomedicine

SN - 1743-5889

IS - 7

ER -