Candidate genes and cerebral palsy: A population-based study

Catherine S. Gibson, Alastair H. MacLennan, Gustaaf A. Dekker, Paul N. Goldwater, Thomas R. Sullivan, David J. Munroe, Shirley Tsang, Claudia Stewart, Karin B. Nelson

Research output: Contribution to journalArticlepeer-review

45 Citations (Scopus)


Objective. The objective of this study was to examine whether selected genetic polymorphisms in the infant are associated with later-diagnosed cerebral palsy. Methods. A population-based case-control study was conducted of 28 single-nucle- otide polymorphisms measured in newborn screening blood spots. A total of 413 children with later-diagnosed cerebral palsy were born to white women in South Australia in 1986-1999, and there were 856 control children. Distributions of genotypic frequencies were examined in total cerebral palsy, in gestational age groups, and by types of cerebral palsy and gender. Genotyping was performed by using a TaqMan assay. Results. For inducible nitric-oxide synthase, possession of the T allele was more common in all children with cerebral palsy and for heterozygotes who were born at term. For lymphotoxin α, homozygous variant status was associated with risk for cerebral palsy and with spastic hemiplegic or quadriplegic cerebral palsy. Among term infants, heterozygosity for the endothelial protein C receptor single-nucleotide polymorphism was more frequent in children with cerebral palsy. In preterm infants, the variant A allele of interleukin 8 and heterozygosity for the β-2 adrenergic receptor were associated with cerebral palsy risk. Interleukin 8 heterozygote status was associated with spastic diplegia. Variants of several genes were associated with cerebral palsy in girls but not in boys. Conclusions. Two of the 28 single-nucleotide polymorphisms examined were associated with all types of spastic cerebral palsy in both gestational age groups and others with cerebral palsy in gestational age or cerebral palsy subgroups. Some of these associations support previous findings. There may be a genetic contribution to cerebral palsy risk, and additional investigation is warranted of genes and gene- environment interactions in cerebral palsy.

Original languageEnglish
Pages (from-to)1079-1085
Number of pages7
Issue number5
Publication statusPublished - 1 Nov 2008


  • Cerebral palsy
  • Genetics
  • IL-8
  • Nitric-Oxide synthase
  • Prematurity

ASJC Scopus subject areas

  • Pediatrics, Perinatology, and Child Health

Cite this