Antiendotoxin activity of cationic peptide antimicrobial agents

Monisha Gough, Robert E.W. Hancock, Niamh M. Kelly

Research output: Contribution to journalArticlepeer-review

227 Citations (Scopus)


The endotoxin from gram-negative bacteria consists of a molecule lipopolysaccharide (LPS) which can be shed by bacteria during antimicrobial therapy. A resulting syndrome, endotoxic shock, is a leading cause of death in the developed world. Thus, there is great interest in the development of antimicrobial agents which can reverse rather than promote sepsis, especially given the recent disappointing clinical performance of antiendotoxin therapies. We describe here two small cationic peptides, MBI-27 and MBI-28, which have both antiendotoxic and antibacterial activities in vitro and in vivo in animal models. We had previously demonstrated that these peptides bind to LPS with an affinity equivalent to that of polymyxin B. Consistent with this, the peptides blocked the ability of LPS and intact cells to induce the endotoxic shock mediator, tumor necrosis factor (TNF), upon incubation with the RAW 264.7 murine macrophage cell line. MBI-28 was equivalent to polymyxin B in its ability to block LPS induction of TNF by this cell line, even when added 60 min after the TNF stimulus. Furthermore, MBI-28 offered significant protection in a galactosamine-sensitized mouse model of lethal endotoxic shock. This protection correlated with the ability of MBI-28 to reduce LPS-induced circulating TNF by nearly 90% in this mouse model. Both MBI-27 and MBI-28 demonstrated antibacterial activity against gram-negative bacteria in vitro and in vivo against Pseudomonas aeruginosa infections in neutropenic mice.

Original languageEnglish
Pages (from-to)4922-4927
Number of pages6
JournalInfection and Immunity
Issue number12
Publication statusPublished - 1 Jan 1996
Externally publishedYes

ASJC Scopus subject areas

  • Parasitology
  • Microbiology
  • Immunology
  • Infectious Diseases

Cite this