Alternative strategies for the study and treatment of clinical bacterial biofilms

Corrie R. Belanger, Sarah C. Mansour, Daniel Pletzer, Robert E.W. Hancock

Research output: Contribution to journalReview articlepeer-review

11 Citations (Scopus)

Abstract

Biofilms represent an adaptive lifestyle where microbes grow as structured aggregates in many different environments, e.g. on body surfaces and medical devices. They are a profound threat in medical (and industrial) settings and cause two-thirds of all infections. Biofilm bacteria are especially recalcitrant to common antibiotic treatments, demonstrating adaptive multidrug resistance. For this reason, novel methods to eradicate or prevent biofilm infections are greatly needed. Recent advances have been made in exploring alternative strategies that affect biofilm lifestyle, inhibit biofilm formation, degrade biofilm components and/or cause dispersal. As such, naturally derived compounds, molecules that interfere with bacterial signaling systems, anti-biofilm peptides and phages show great promise. Their implementation as either stand-alone drugs or complementary therapies has the potential to eradicate resilient biofilm infections. Additionally, altering the surface properties of indwelling medical devices through bioengineering approaches has been examined as a method for preventing biofilm formation. There is also a need for improving current biofilm detection methods since in vitro methods often do not accurately measure live bacteria in biofilms or mimic in vivo conditions. We propose that the design and development of novel compounds will be enabled by the improvement and use of appropriate in vitro and in vivo models.

Original languageEnglish
Pages (from-to)41-53
Number of pages13
JournalEmerging Topics in Life Sciences
Volume1
Issue number1
DOIs
Publication statusPublished or Issued - Apr 2017
Externally publishedYes

ASJC Scopus subject areas

  • Agricultural and Biological Sciences(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Medicine(all)

Cite this